

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

- Durchfluss- und Temperatur-Messung
- Komfortabel einstellbar über IO-Link-Schnittstelle
- Prozessdaten auch für Fernwartung nutzbar
- Im SIO-Mode Analog- und Schaltausgang verfügbar

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

Inhalt

1	Vorbemerkungen	4
1.1	Zielgruppe	4
1.2	Sicherheitshinweise	4
1.3	Bestimmungsgemäße Verwendung	4
1.4	Messprinzip	4
2	Konfiguration	5
2.1	Betriebsarten des Ausgangs Out 1	6
2.1.1	Grenzwertüberwachung	6
2.1.2	Bereichswertüberwachung	6
2.1.3	Verknüpfung Durchfluss- und Temperaturgrenzwertüberwachung	6
2.2	Messgröße für Ausgang Out 2	6
2.3	Erfassungsbereich für Durchfluss festlegen	7
2.3.1	Beispiel: Erfassungsbereich festlegen	8
2.4	Durchflusserfassung - und überwachung	9
2.4.1	Durchflussgrenzwert einstellen	9
2.4.2	Durchflussbereichswerte einstellen	9
2.4.3	Analogausgang MIN-/MAX-Wert (4 und 20 mA) einstellen	9
2.4.4	Analogausgang MITTE-Wert (12 mA) einstellen	10
2.5	Temperaturmessung und -überwachung	10
2.5.1	Temperaturgrenzwert einstellen	10
2.5.2	Temperaturbereichswerte einstellen	11
2.5.3	Analogausgang MIN-/MAX-Wert (4 und 20 mA) einstellen	11
2.6	Verknüpfung Durchfluss- und Temperaturüberwachung	11

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

2.7	Einlern - Statusinformationen	13
2.8	Mittelwertbildung Durchflusswert	13
3	Installation	14
4	Abmessungen	15
5	Elektrisches Anschlussdiagramm	16
6	IO-Link	17
6.1	Allgemeines	17
6.2	Gerätedaten	17
6.3	Prozessdaten	17
6.4	Standardkommandos	18
6.5	On-Request Daten	19
6.6	Events	22
6.7	Fehlermeldungen IO-Link	22
7	Technische Daten	23

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

1 Vorbemerkungen

1.1 Zielgruppe

Die Betriebsanleitung enthält Informationen und Vorgaben für Fachkräfte, die mit Arbeiten an elektrischen Anlagen vertraut sind.

Grundkenntnisse im Umgang mit IO-Link-Komponenten sowie der notwendigen Peripherie sind nötig.

Weitere Informationen zu IO-Link sind auf der Webseite: www.io-link.com zu erfahren.

1.2 Sicherheitshinweise

- Den Sensor nur durch ausgebildetes Fachpersonal installieren.
- Sensor sicher vor mechanischer Beschädigung schützen.
- Bei Montage unbedingt die Montagevorschriften einhalten.

1.3 Bestimmungsgemäße Verwendung

Der Sensor SDNC 503 GANPL erfasst die Durchflussgeschwindigkeit und die Temperatur von flüssigen Medien innerhalb der im Sensor integrierten Messstrecke. Die Messwerte werden über den Analogausgang 4...20 mA ausgegeben oder mit der Grenzwertfunktion auf Über- oder Unterschreitung überwacht. Der Status der Grenzwertfunktion wird mit dem PNP-Schaltausgang angezeigt. Für die Konfiguration besitzt der Sensor eine IO-Link-Schnittstelle V1.1, über die alle Parameter mit einem Master-Modul und der passenden Software eingestellt werden können. Über diese Schnittstelle können auch die Prozessdaten übertragen werden.

1.4 Messprinzip

Das Messprinzip des Sensors ist kalorimetrisch. Ein beheiztes Temperaturmesselement wird durch das vorbeiströmende Medium abgekühlt. Ein weiteres Messelement erfasst die Mediumtemperatur. Die Temperaturdifferenz zwischen beiden Messelementen ist ein Maß für die Strömungsgeschwindigkeit und wird elektronisch und digital ausgewertet.

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

2 Konfiguration

Die Konfiguration des Sensors erfolgt immer über die standardisierte IO-Link-Schnittstelle.

EGE bietet mit dem USB-IO-Link-Master-Set (Z01216) alle nötigen Komponenten an, die für eine bequeme und einfache Konfiguration des Durchflusssensors benötigt werden. Mit der Master-Software und der zum Sensor gehörigen Gerätebeschreibung (IODD) kann der Sensor komfortabel parametriert werden.

Es kann auch jeder andere IO-Link-Master genutzt werden, der die Spezifikationen der IOLink Version 1.1 erfüllt.

Die für die Konfigurierung erforderliche IODD (Input Output Device Discription) wird auf einem Speicherstick mit dem IO-Link-fähigen Produkt geliefert oder ist auf der Internetseite

www.ege-elektronik.com

im Bereich der IO-Link-Produkte herunterladbar.

Der Sensor wird unmittelbar nach Herstellen der Verbindung zum IO-Link-Master durch ein Wake-up-Signal in den IO-Link-Mode gesetzt. Er beginnt mit dem Senden der Prozessdaten und ist bereit für den Empfang von Kommandos und Parametern. Ist der Sensor nicht mit einem Master verbunden, befindet er sich im SIO-Mode (Serial Input Output) und kann als Gerät mit Schalt- und Analogausgang benutzt werden.

Nachfolgende Einstellanweisungen erfordern eine IO-Link-Master-Sensor-Verbindung. Die Konfigurationssoftware muss gestartet und eine Kommunikationsverbindung hergestellt sein. Weitere Informationen zur Konfigurationssoftware enthält die Betriebsanleitung des IO-Link-Masters.

Für jede Konfiguration des Sensors ist als erstes die Betriebsart des Schaltausgangs und die Messgröße für den Analogausgang festzulegen

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

2.1 Betriebsarten des Ausgangs Out 1

Der Ausgang Out 1 ist ein plusschaltender Halbleiterausgang, für den die folgenden Betriebsarten in der Konfigurationssoftware ausgewählt werden können.

2.1.1 Grenzwertüberwachung

Die Grenzwertüberwachung kann für Durchfluss- oder Temperaturüberwachung genutzt werden.

Hnc	Öffnerfunktion	Ausgang deaktiv, wenn Grenzwert überschritten	
Hno	Schließerfunktion	Ausgang aktiv, wenn Grenzwert überschritten	

2.1.2 Bereichswertüberwachung

Die Bereichswertüberwachung kann für Durchfluss- oder Temperaturüberwachung genutzt werden.

Fnc	Öffnerfunktion	Ausgang deaktiv, wenn Wert außerhalb Bereich
Fno	Schließerfunktion	Ausgang aktiv, wenn Wert außerhalb Bereich

2.1.3 Verknüpfung Durchfluss- und Temperaturgrenzwertüberwachung

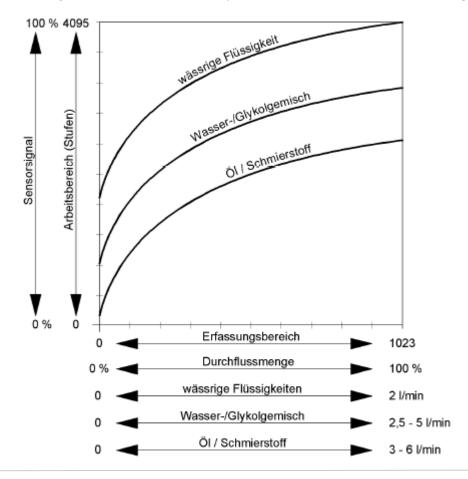
(<flow) oder<br="">(>Temp)</flow)>		Ausgang aktiv, wenn Grenzwert für Durchfluss unterschritten oder Grenzwert für Temperatur überschritten
--	--	---

2.2 Messgröße für Ausgang Out 2

Der Ausgang Out 2 ist ein 4...20 mA Stromausgang. Mit der Konfigurationssoftware können diesem Ausgang Durchfluss- oder Temperaturmesswerte zugewiesen werden.

• Im Konfigurationstool für den Ausgang Out 2 die Messgröße Durchfluss oder Temperatur auswählen.

Betriebsanleitung Strömungssensor SDNC 503 GANPL


Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

2.3 Erfassungsbereich für Durchfluss festlegen

Bevor weitere Parameter konfiguriert werden, muss der Erfassungsbereich des Durchflusssensors innerhalb seines Arbeitsbereiches festgelegt werden. Auf den gewählten Erfassungsbereich beziehen sich alle weiteren Einstellungen für Grenzwerte.

Die Eigenschaften des zu erfassenden Medium wirken sich auf das Sensorsignal aus. Eine Flüssigkeit mit einer hohen Wärmeleitfähigkeit führt bereits bei geringer Durchflussgeschwindigkeit viel Wärme vom Sensor ab. Die obere Erfassungsgrenze ist auf einen Maximalwert von ca. 2 l/min begrenzt. Öle und Kühlschmierstoffe besitzen eine schlechtere Wärmeleitfähigkeit und liefern auch bei größeren Durchflüssen noch ein verwertbares Signal.

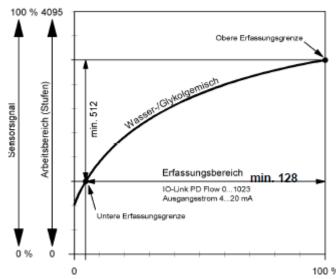
Die untere Erfassungsgrenze muss 512 Stufen (ges. Arbeitssbereich 0...4095 Stufen) bzw. 128 Stufen (ges. Erfassungsbereich 0...1023 Stufen) kleiner sein als die obere Erfassungsgrenze.

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

2.3.1 Beispiel: Erfassungsbereich festlegen

- Prüfen bzw. Abschätzen, ob der zu erfassende Durchfluss innerhalb des Arbeitsbereichs des Durchflusssensors liegt.
- Dazu ggf. den Sensor in den Auslieferungszustand zurücksetzen mit dem Kommando "Auf Werkseinstellungen zurücksetzen". Der Erfassungsbereich wird damit auf den gesamten Arbeitsbereich konfiguriert, wie in der Abbildung 1 dargestellt.
- Durchfluss für die untere Erfassungsgrenze vorgeben.
- Den Prozesswert in den Parameter "Untere Erfassungsgrenze" eingeben. Dieser Wert ergibt sich aus dem Prozessdatenwert x 4.


alternativ

- Kommando "Einlernen unterer Erfassungsbereich (171)" ausführen.
- Durchfluss für die obere Erfassungsgrenze vorgeben.
- Den Prozesswert in den Parameter "Obere Erfassungsgrenze" eingeben. Dieser Wert ergibt sich aus dem Prozessdatenwert x 4.

alternativ

• Kommando "Einlernen oberer Erfassungsbereich (172)" ausführen.

Nach Auswahl des Einlern-Kommandos erfolgt für eine Zeit von 6 Sekunden eine Mittelwertbildung des Durchflusswertes. Während dieser Zeit sollte die Durchflussgeschwindigkeit konstant gehalten werden. Die eingelernten Werte erscheinen anschließend nach Aktualisierung in den zugehörigen Feldern.

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

2.4 Durchflusserfassung - und überwachung

2.4.1 Durchflussgrenzwert einstellen

- Die Betriebsart des Ausgangs Out 1 entsprechend Abschnitt 2.1.1 auswählen.
- Eingabe eines Wertes in das Feld "Schaltpunkt" in der Konfigurationssoftware.
- Eingabe eines Wertes für die Hysterese.
- · Eingabe eines Wertes für die Ein- und Ausschaltverzögerung.

Alternativ kann der Grenzwert bei vorgegebenem Durchfluss mit der Teach-in-Funktion eingelernt werden. Diese Funktion befindet sich im Abschnitt "Kommandos" unter den Standardkommandos (Abschn. 6.4).

► Schaltpunkt Durchfluss einlernen (160)

Nach Auswahl dieses Kommandos erfolgt für eine Zeit von 6 Sekunden eine Mittelwertbildung des Durchflusswertes. Während dieser Zeit sollte dieser konstant gehalten werden. Der Grenzwert erscheint anschließend nach Aktualisierung im Feld für den Durchfluss-Schaltpunkt.

2.4.2 Durchflussbereichswerte einstellen

Der Durchflussmesswert kann darauf hin überwacht werden, ob er sich innerhalb oder außerhalb eines Durchflussbereiches befindet.

- Die Betriebsart des Ausgangs Out 1 entsprechend Abschnitt 2.1.2 auswählen.
- Eingabe eines Wertes in das Feld "Unterer Fensterwert".
- Eingabe eines Wertes in das Feld "Oberer Fensterwert".
- Eingabe eines Wertes für die Ein- und Ausschaltverzögerung.

Alternativ können mit Teach-in-Kommandos die Bereichsgrenzen bei vorgegebenen Durchflüssen eingelernt werden.

► Teach-in unterer Fensterwert Durchfluss (161)

► Teach-in oberer Fensterwert Durchfluss (162)

Nach Auswahl dieser Kommandos erfolgt jeweils für eine Zeit von 6 Sekunden eine Mittelwertbildung des Durchflusswertes. Während dieser Zeit sollte die Durchflussgeschwindigkeit konstant gehalten werden. Die eingelernten Werte erscheinen anschließend nach Aktualisierung in den zugehörigen Feldern.

2.4.3 Analogausgang MIN-/MAX-Wert (4 und 20 mA) einstellen

Der Analogausgang (4...20 mA) für den Durchfluss kann beliebig innerhalb des Erfassungsbereichs eingestellt werden. Zwischen Start- und Endwert müssen min. 512 Stufen liegen.

- Die Messgröße für den Ausgangs Out 2 entsprechend Abschnitt 2.2 auswählen.
- Eingabe eines Wertes für den 4 mA-Wert in das Feld "Startwert Analogausgang"
- Eingabe eines Wertes für den 20 mA-Wert in das Feld "Endwert Analogausgang"

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

Alternativ können mit Teach-in-Kommandos der Start- und der Endwert eingelernt werden.

- ▶ 4 mA Wert für Analogausgang Durchfluss einlernen (163)
- ▶ 20 mA Wert für Analogausgang Durchfluss einlernen (164)

Nach Auswahl dieser Kommandos erfolgt jeweils für eine Zeit von 6 Sekunden eine Mittelwertbildung des Durchflusswertes. Während dieser Zeit sollte die Durchflussgeschwindigkeit konstant gehalten werden. Die eingelernten Werte erscheinen anschließend nach Aktualisierung in den zugehörigen Feldern.

2.4.4 Analogausgang MITTE-Wert (12 mA) einstellen

Start- und Endwert können automatisch aus dem Wert für die Bereichsmitte berechnet werden. Dieser muss sich im Bereich zwischen 250 und 750 Stufen befinden. Er wir bei vorgegebenem Durchfluss mit einem Standardkommando eingelernt.

• Die Messgröße Durchfluss für den Ausgangs Out 2 entsprechend Abschnitt 2.2 auswählen.

▶ 12 mA Wert für Analogausgang Durchfluss einlernen (165)

Nach Auswahl dieses Kommandos erfolgt für eine Zeit von 6 Sekunden eine Mittelwertbildung des Durchflusswertes. Während dieser Zeit sollte die Durchflussgeschwindigkeit konstant gehalten werden. Die daraus berechneten Start- und Endwerte erscheinen anschließend nach Aktualisierung in den entsprechenden Feldern im Konfigurationsprogramm.

2.5 Temperaturmessung und -überwachung

2.5.1 Temperaturgrenzwert einstellen

Der Temperaturgrenzwert für ein Schaltsignal kann beliebig innerhalb des Erfassungsbereichs eingestellt werden.

- Die Betriebsart des Ausgangs Out 1 entsprechend Abschnitt 2.1.1 auswählen.
- Eingabe eines Wertes in das Feld "Schaltpunkt" in der Konfigurationssoftware.
- · Eingabe eines Wertes für die Hysterese.
- Eingabe eines Wertes für die Ein- und Ausschaltverzögerung.

Alternativ kann der Grenzwert bei vorgegebener Temperatur mit der Einlern-Funktion festgelegt werden. Diese Funktion befindet sich im Abschnitt "Kommandos" unter den Standardkommandos (Abschn. 6.4).

► Schaltpunkt Temperatur einlernen (166)

Nach Auswahl dieses Kommandos erfolgt für eine Zeit von 6 Sekunden eine Mittelwertbildung der Temperatur. Während dieser Zeit sollte diese konstant gehalten werden. Der Grenzwert erscheint nach Aktualisierung anschließend im Feld für den Temperatur-Schaltpunkt.

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

2.5.2 Temperaturbereichswerte einstellen

Der Temperaturmesswert kann darauf hin überwacht werden, ob er sich in oder außerhalb eines Temperaturbereiches befindet.

- Die Betriebsart des Ausgangs Out 1 entsprechend Abschnitt 2.1.2 auswählen.
- Eingabe eines Wertes in das Feld "Unterer Fensterwert".
- Eingabe eines Wertes in das Feld "Oberer Fensterwert".
- Eingabe eines Wertes für die Ein- und Ausschaltverzögerung.

Alternativ können die Bereichsgrenzen bei vorgegebener Temperatur mit der Einlern-Funktion festgelegt werden. Diese Funktion befindet sich im Abschnitt "Kommandos" unter den Standardkommandos (Abschn. 6.4).

- **▶** Oberer Fensterwert Temperatur einlernen (167)
- ► Unterer Fensterwert Temperatur einlernen (168)

Nach Auswahl dieser Kommandos erfolgt jeweils für eine Zeit von 6 Sekunden eine Mittelwertbildung der Temperatur. Während dieser Zeit sollte diese konstant gehalten werden. Die Bereichswerte erscheinen nach Aktualisierung in den zugehörigen Feldern.

2.5.3 Analogausgang MIN-/MAX-Wert (4 und 20 mA) einstellen

Der Analogausgang Out 2 (4...20 mA) für die Temperatur kann auf eine Spanne innerhalb des Erfassungsbereichs eingestellt werden. Start- und Endwert müssen einen Abstand von min. 16 °C besitzen.

- Die Messgröße für den Ausgangs Out 2 entsprechend Abschnitt 2.2 auswählen.
- Eingabe eines Wertes für den 4 mA-Wert in das Feld "Startwert Analogausgang"
- Eingabe eines Wertes für den 20 mA-Wert in das Feld "Endwert Analogausgang"

Alternativ können mit Einlern-Kommandos der Start- und der Endwert eingelernt werden.

▶ 4 mA Wert für Analogausgang Temperatur einlernen (169)

▶ 20 mA Wert für Analogausgang Temperatur einlernen (170)

Nach Auswahl dieser Kommandos erfolgt jeweils für eine Zeit von 6 Sekunden eine Mittelwertbildung der Temperatur. Während dieser Zeit sollte diese konstant gehalten werden. Die eingelernten Werte erscheinen anschließend nach Aktualisierung in den zugehörigen Feldern.

2.6 Verknüpfung Durchfluss- und Temperaturüberwachung

Der Ausgang Out 1 kann den Status einer logischen Verknüpfung von Durchfluss- und Temperaturgrenzwert anzeigen. Liegt der Durchflussmesswert unterhalb des eingestellten Durchflussgrenzwertes oder der Temperaturmesswert oberhalb des eingestellten Temperaturgrenzwertes, so ist der Ausgang Out 1 aktiv.

- Die Betriebsart des Ausgangs Out 1 entsprechend Abschnitt 2.1.3 auswählen.
- Eingabe eines Wertes für den Durchflussgrenzwert in das Feld "Schaltpunkt I/min".

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

- · Eingabe eines Hysteresewertes für den Durchflussgrenzwert.
- · Eingabe eines Wertes für den Temperaturgrenzwert in das Feld "Schaltpunkt °C".
- · Eingabe eines Hysteresewertes für den Temperaturgrenzwert.
- Eingabe eines Wertes für die Ein- und Ausschaltverzögerung.

Alternativ können der Temperatur- und Durchfluss-Grenzwert bei vorgegebenen Bedingungen mit der Einlern-Funktion festgelegt werden. Diese Funktionen befinden sich im Abschnitt "Kommandos" unter den Standardkommandos (Abschn. 6.4).

- ► Schaltpunkt Temperatur einlernen (166)
- ► Schaltpunkt Durchfluss einlernen (160)

Nach Auswahl dieser Kommandos erfolgt jeweils für eine Zeit von 6 Sekunden eine Mittelwertbildung der Messgröße. Während dieser Zeit sollte diese konstant gehalten werden. Die Grenzwerte erscheinen nach Aktualisierung anschließend in den zugehörigen Feldern.

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

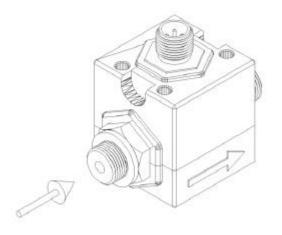
2.7 Einlern - Statusinformationen

Nach Starten eines Einlern-Kommandos kann der Status über den Index 81 (Status Einlernprozess) abgefragt werden.

Wert	Kurzbezeichnung	Beschreibung
0	Idle	Leerlauf
1	Teach-in-Success	Einlernvorgang erfolgreich abgeschlossen
5	Busy	Einlernvorgang läuft
7	Signal zu unruhig	Durchflussschwankungen verhindern eine ausreichende Mittelwertbildung
8	Bereichsfehler	Spanne zwischen Start- und Endwert zu klein
9	Temperatur oberhalb Erfassungsbereich	Mediumtemperatur ist höher als 60°C
10	Temperatur unterhalb Erfassungsbereich	Mediumtemperatur ist niedriger als 0°C
11	Durchfluss oberhalb Erfassungsbereich	

2.8 Mittelwertbildung Durchflusswert

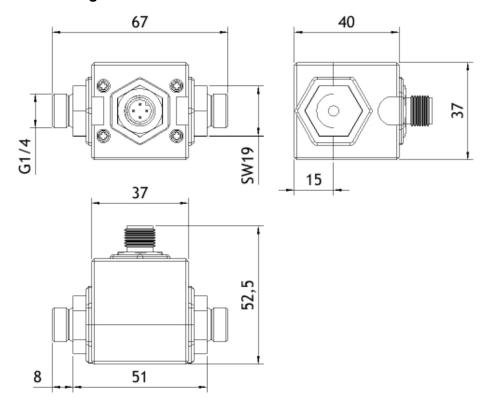
Der Zeitraum, in dem der gleitende Mittelwert gebildet wird, ist im Bereich 0,2 bis 6,4 Sekunden wählbar. Eine kurze Zeit führt zu schneller Reaktion auf Durchflussänderungen, eine lange Zeit führt zu einer ruhigen Anzeige.


Die Mittelwertbildung während eines Teach-in-Prozesses wird von diesen Zeiten nicht beeinflusst.

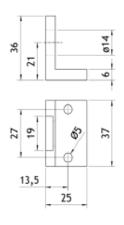
Betriebsanleitung Strömungssensor SDNC 503 GANPL

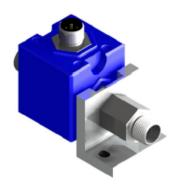
Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

3 Installation


- · Durchflusspfeil auf dem Gehäuse beachten.
- Hohlräume zwischen oder in Anschlussteilen vermeiden, ggf. Füllscheiben mit $\emptyset_i = 4$ mm einsetzen.
- Durchmessersprünge, Ventile und Bögen in einem Abstand von 100 mm vor dem
- · Durchflusssensor vermeiden.
- Schraubverbindungen mit Flachdichtungen, Teflon-Tape oder flüssigen Dichtmittel abdichten.
- Keine Scherkräfte zwischen den Anschlussteilen des Sensors verursachen.
- Sofern eine Halterung des Sensors erforderlich, den als Zubehör verfügbaren Befestigungswinkel (Z01215) verwenden. (Flachdichtung entfällt, Tape oder flüssiges Dichtmittel verwenden)
- Gelbe Abdeckkappen erst kurz vor der Montage des Sensors abschrauben.

Betriebsanleitung Strömungssensor SDNC 503 GANPL


Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link


4 Abmessungen

Befestigungswinkel Z01215 (opt. Zubehör)

Befestigungsteil G1/4A / G1/4I gehört nicht zum Lieferumfang.

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

5 Elektrisches Anschlussdiagramm

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

6 IO-Link

6.1 Allgemeines

Der Sensor besitzt eine Kommunikationsschnittstelle nach dem IO-Link-Standard V1.1 Für den Betrieb dieser Schnittstelle ist ein IO-Link-Master mit den entsprechenden Funktionalitäten erforderlich.

6.2 Gerätedaten

Vendor ID [dez/hex] 703/0x2BF Device ID [dez] 205 **IO-Link Revision** 1.1 Bitrate COM₂ Minimum Cyle Time 3,5 ms SIO-Mode unterstützt **Block Parametrierung** unterstützt Data storage unterstützt1

6.3 Prozessdaten Gesamtlänge: 32 Bit

Name	Beschreibung	Datentyp	Bit-Offset	Wertebereich	Gradient	Einheit
Durchfluss	Aktueller Durchfluss	UInt16	16	0 1023		
Temperatur	Aktuelle Medientemperatur	UInt15	1	0 600	0,1	°C
S1	Schaltzustand S1	Bool	0	true (aktiv) false (inaktiv)		

¹ Nach einem Gerätewechsel sind die Durchflussparameter neu zu bestimmen

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

6.4 Standardkommandos

Die Kommandos werden in den Index 2 geschrieben und müssen Datentyp UInt8 besitzen.

Wert	Beschreibung
130	Rücksetzen auf Werkseinstellung
160	Schaltpunkt Durchfluss einlernen
161	Unterer Fensterwert Durchfluss einlernen
162	Oberer Fensterwert Durchfluss einlernen
163	4mA Wert für Analogausgang Durchfluss einlernen
164	20mA Wert für Analogausgang Durchfluss einlernen
165	12mA Wert für Analogausgang Durchfluss einlernen
166	Schaltpunkt Temperatur einlernen
167	Unterer Fensterwert Temperatur einlernen
168	Oberer Fensterwert Temperatur einlernen
169	4mA Wert für Analogausgang Temperatur einlernen
170	20mA Wert für Analogausgang Temperatur einlernen
171	Untere Erfassungsgrenze einlernen
172	Obere Erfassungsgrenze einlernen

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

6.5 On-Request Daten

Datentypen

R Record 16 bit B Boolean S String

S16 String 16 Byte I16 Integer16 U8 UInteger8

Zugriff

RW Read/Write (Schreiben und Lesen)

RO Read Only (nur Lesen)
WO Write Only (nur Schreiben)

Index	Bit	Beschreibung	Datentyp	Zugriff	Werkseinstellung	Wertebereich	Gradient	Einheit
12		Device Access Locks	R	RW				
12	2	Teach-in Funktionen	В	RW	0	0: nicht geblockt 1: geblockt		
16		Herstellername	s	RO		Elektronik ial-Sensoren GmbH		
17		Herstellertext	s	RO	RO www.ege-elektronik.com			
18		Produktname	s	RO	RO SDNC 503 GANPL			
19		Produkt ID	s	RO	RO P11376			
20		Produkttext	s	RO	O Flow Meter			
21		Seriennummer	s	RO				
22		Hardwareversion	s	RO				
23		Firmwareversion	s	RO				

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

24	Kundenspez. Kennung	S16	RW				
64	Betriebsarten für Schaltausgang Out1	UB	RW	1	1: Hno (Durchfluss) 2: Hnc (Durchfluss) 3: Hno (Temperatur) 4: Hnc (Temperatur) 5: Fno (Durchfluss) 6: Fnc (Durchfluss) 7: Fno (Temperatur) 8: Fnc (Temperatur) 9: (< Flow) ODER (>Temp)		
65	Messgröße für Analogausgang Out2	U8	RW	1	1: Durchfluss 2: Temperatur		
66	Durchfluss Grenzwert	116	RW	512	2 1023		
67	Durchfluss Schalthysterese	116	RW	10	1 100		
66	Durchfluss Unterer Grenzwert Bereichsfenster	116	RW	512	1 1022		
69	Durchfluss Oberer Grenzwert Bereichsfenster	116	RW	150	21023		
70	Temperatur Grenzwert	116	RW	200	2 600	0,1	°C
71	Temperatur Schalthysterese	116	RW	10	2 200	0,1	°C
72	Temperatur Unterer Grenzwert Bereichsfenster	116	RW	200	1 599	0,1	°C
73	Temperatur Oberer Grenzwert Bereichsfenster	116	RW	210	2 600	0,1	°C
74	Einschalt-Verzögerung	116	RW	0	0 500	0,1	S
75	Ausschalt-Verzögerung	116	RW	0	0 500	0,1	5
76	Durchfluss Startwert (4 mA) Analogausgang	116	RW	0	0 512		
77	Durchfluss Endwert (20 mA) Analogausgang	116	RW	1023	512 1023		
78	Temperatur Startwert (4 mA) Analogausgang	116	RW	0	0400	0,1	°C
79	Temperatur Endwert (20 mA) Analogausgang	116	RW	600	200600	0,1	°C

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

80	Zeitraum für Mittelwert	U8		16	2, 8, 16, 32, 64 0,1 s
81	Ergebnis Teach-in	U8	RO	0	0: Idle 1: Teach-in-Success 5: Busy Teach Error: 7: Signal zu unruhig 8: Bereichsfehler 9: Temperatur oberhalb Erfassungsbereich 10: Temperatur unterhalb Erfassungsbereich
82	Untere Erfassungsgrenze	116	RW	0	0 3583
83	obere Erfassungsgrenze	116	RW	0	512 4095

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

6.6 Events

Code	Name	Тур	Beschreibung
0x5110	UB_High	Warnung	UB > 30V
0x5111	UB_Low	Warnung	UB < 18V
0x8C10	T_Medium_High	Warnung	Mediumtemperatur > 60°C
0x8C30	T_Medium_Low	Warnung	Mediumtemperatur < 0°C
0x8DF0	Testevent	Warnung	Nur für interne Prüfzwecke
0x8DF1	Testevent	Warnung	Nur für interne Prüfzwecke

6.7 Fehlermeldungen IO-Link

Errorcode	Name	Beschreibung
0x8011	Index nicht vorhanden	Zugriff auf einen nicht vorhandenen Index
0x8012	Sub-Index nicht vorhanden	Zugriff auf einen nicht vorhandenen Subindex
0x8020	Service z. Zt. nicht verfügbar	Funktion steht z. Zt. nicht zur Verfügung
0x8030	Parameter außerhalb des erlaubten Bereiches	Parameter passt nicht ins vorgegebene Raster
0x8031	Parameter oberhalb des erlaubten Bereiches	Parameter ist zu groß
0x8032	Parameter unterhalb des erlaubten Bereiches	Parameter ist zu klein
0x8033	Parameterlänge zu groß	Geschriebene Parameterlänge zu groß
0x8034	Parameterlänge zu klein	Geschriebene Parameterlänge zu klein
0x8035	Funktion nicht verfügbar	Systemkommando wird vom Gerät nicht unterstützt
0x8040	Ungültiger Parametersatz	Ungültige Blockparametrierung

Betriebsanleitung Strömungssensor SDNC 503 GANPL

Inline Durchflusssensor nicht linearisiert für wässrige Medien, Öl und Wasser/Glykolgemische mit IO-Link

7 Technische Dater

Betriebsspannung [VDC].	1830
Stromaufnahme [mA]	≤ 40
Umgebungstemperatur [°C]	-1060

Ausgang Out 1	PNP-NO/NC

Schaltstrom² [mA] \leq 150

Ausgang Out 2	Analog
Analog [mA]	420
Last R ₁	≤ 500 Ω

Durchflusserfassung³ flüssige Medien

Reproduzierbarkeit [± %]..... ≤ 2

Reaktionszeit⁴ [s] ≥ 0.2

Elektrischer Anschluss...... M12 x 1, 4-polig

² bei T_{II} = 25 °C, Reduzierung bis auf 20% bei T_{II} = 60°C

³ die untere und obere Erfassungsgrenze hängt von den Eigenschaften des Mediums ab

⁴ abhängig von der gewählten Zeit für die Mittelwertbildung und den Eigenschaften des Mediums

⁵ für wässrige Medien bei einer Durchflussmenge min. 0,50 l/min